

SCHEDA TECNICA

Descrizione

Microsfere cave di vetro di altissima qualità, caratterizzate da un'elevata resistenza all'usura, all'urto e un elevatissimo potere isolante (ottime per coating).

Caratteristiche principali

- Elevato potere isolante
- Alta resistenza all'urto
- Bassa influenza sulla viscosità del sistema
- Morfologia perfettamente sferica
- Nessun assorbimento della resina
- Minimo fabbisogno di resina per garantire la bagnabilità
- Riduzione del peso specifico e dei ritiri lineari nei compound e nei compositi
- Ottima resistenza all'acqua

Densità media particelle	Densità	0,15 g/cm3	
	Intervallo densità	0,13 - 0,17 g/cm3	
Densità apparente	Intervallo (calcolato)	0,07 - 0,12 g/cm3	
Colore	-	Bianco, semitrasparente	
Conducibilità termica	W/m.K a 0 °C	Da 0,05 a 0,26	
Diametro	μm	Da 30 a 115 max	

			Sopravvivenza		Integrità in
			Minima	Tipica	Volume tipica
Informazioni	Bar	21	80%	90%	96%
Pressione					
Isostatica	MPa	2,1	80%	90%	96%
(test)					

N.B. Le pompe ad ingranaggi tendono a causare la rottura delle microsfere, perciò non dovrebbero essere usate senza valutazioni adeguate di questo rischio. Al fine di ridurre al minimo la rottura delle suddette, occorre mantenere le pressioni di lavorazione al di sotto del livello di rottura a compressione isostatica, secondo quanto riportato nelle tabelle per prodotto.